Nonlinear Channel Equalization Using A Novel Recurrent Interval Type-2 Fuzzy Neural System

نویسندگان

  • Ching Hung Lee
  • Tzu Wei Hu
  • Hao Han Chang
چکیده

Nonlinear inter-symbol interference leads to significant error rate in nonlinear communication and digital storage channel. In this paper, therefore, a novel recurrent interval type-2 fuzzy neural network with asymmetric membership functions (RT2FNN-A) is proposed for nonlinear channel equalization. The RT2FNN-A uses the interval asymmetric type-2 fuzzy sets and it implements the fuzzy logic system in a five-layer neural network structure. The RT2FNN-A is an extensive results of type-2 fuzzy neural network to provide memory elements for capturing the system’s dynamic information and has the properties of high approximation accuracy and small network structure. Based on the Lyapunov theorem and gradient descent method, the convergence of RT2FNN-A is guaranteed and the corresponding learning algorithm is derived. In addition, the RT2FNN-A is applied in the nonlinear channel equalization to show the performance and effectiveness of RT2FNN-A system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Recurrent Interval Type - 2 Fuzzy Neural Network for Nonlinear Channel Equalization

In this paper, we propose a novel recurrent interval type-2 fuzzy neural network with asymmetric membership functions (RT2FNN-A). The RT2FNN-A uses the interval asymmetric type-2 fuzzy sets and it implements the fuzzy logic system (FLS) in a five-layer neural network structure. The RT2FNN-A is modified from the type-2 fuzzy neural network to provide memory elements for capturing the system’s dy...

متن کامل

System Identification and Adaptive Filter Using a Novel Fuzzy Neuro System

This paper proposes a new intelligent scheme using type-2 fuzzy inference system in neural network structure. This type-2 fuzzy neural network system (type-2 FNN) combines the advantages of type-2 fuzzy logic systems (FLSs) and neural networks (NNs). The general FNN system (called type-1 FNN system) has the properties of parallel computation scheme, easy to implement, fuzzy logic inference syst...

متن کامل

A type-2 neuro-fuzzy system based on clustering and gradient techniques applied to system identification and channel equalization

The integration of fuzzy systems and neural networks has recently become a popular approach in engineering fields for modelling and control of uncertain systems. This paper presents the development of novel type-2 neuro-fuzzy system for identification of time-varying systems and equalization of timevailable online 2 May 2010 eywords: ype-2 fuzzy systems euro-fuzzy network dentification varying ...

متن کامل

Fuzzy Logic as the Logic of Natural Languages

A method for response integration in modular neural networks with type-2 fuzzy logic for biometric systems p. 5 Evolving type-2 fuzzy logic controllers for autonomous mobile robots p. 16 Adaptive type-2 fuzzy logic for intelligent home environment p. 26 Interval type-1 non-singleton type-2 TSK fuzzy logic systems using the hybrid training method RLS-BP p. 36 An efficient computational method to...

متن کامل

Complex-valued SRFNN with Decision Feedback for QAM signalling systems

This paper proposes a novel adaptive decision feedback equalizer (DFE) based on self-constructing recurrent fuzzy neural network (SRFNN) for quadrature amplitude modulation systems. Without the prior knowledge of channel characteristics, a novel training scheme containing both selfconstructing learning and back-propagation algorithms is derived for the SRFNN. The proposed DFE is compared with s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Engineering Letters

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2009